呫吨染料合成方法研究进展
2024-07-06[1]
Baeyer A. Uber Ein Neue Klasse von Farbstoffen(On a New Class of Dyes)[J]. Ber Dtsch Chem Ges,
1871, 4:
555-558.
doi: 10.1002/(ISSN)1099-0682
[2]
Noelting E, Dziewobski K. Zur Kenntniss der Rhodamine[J]. Ber Dtsch Chem Ges,
1905, 38:
3516-3527.
doi: 10.1002/(ISSN)1099-0682
[3]
Ho D T, Schlosser P, Houghton R W. Comparison of SF 6 and Fluorescein as Tracers for Measuring Transport Processes in a Large Tidal River[J]. J Environ Eng,
2006, 132(12):
1664-1669.
doi: 10.1061/(ASCE)0733-9372(2006)132:12(1664)
[4]
Robinson E, MacLeod J A, Lapple C E. A Meteorological Tracer Technique Using Uranine Dye[J]. J Atmos Sci,
2010, 16(1):
63-67.
[5]
Wu T X, Liu G M, Zhao J C. Photoassisted Degradation of Dye Pollutants.V.Self-Photosensitized Oxidative Transformation of Rhodamine B Under Visible Light Irradiation in Aqueous TiO2 Dispersions[J]. J Phys Chem B,
1998, 102(30):
5845-5851.
doi: 10.1021/jp980922c
[6]
Mayer U, Oberlinner A. Rhodamine Dyes:US, 4647675[P]. 1987-03-03.
[7]
Folker K, Fritz M. Water-Soluble Reactive Xanthene Dyestuffs and Process for Preparing Them:US, 3888862[P]. 1975-06-10.
[8]
Nestmann E R, Douglas G R, Matula T I. Mutagenic Activity of Rhodamine Dyes and Their Impurities as Detected by Mutation Induction in Salmonella and DNA Damage in Chinese Hamster Ovary Cells[J]. Cancer Res,
1979, 39:
4412-4417.
[9]
Johnson L V, Walsh M L, Chen L B. Localization of Mitochondria in Living Cells with Rhodamine 123[J]. Proc Natl Acad Sci,
1980, 77(2):
990-994.
doi: 10.1073/pnas.77.2.990
[10]
Widholm J M. The Use of Fluorescein Diacetate and Phenosafranine for Determining Viability of Cultured Plant Cells[J]. Stain Technol,
1972, 47(4):
189-194.
doi: 10.3109/10520297209116483
[11]
Feenstra R P G, Tseng S C G. Comparison of Fluorescein and Rose Bengal Staining[J]. Ophthalmology,
1992, 99(4):
605-617.
doi: 10.1016/S0161-6420(92)31947-5
[12]
Lee S H, Tseng S C G. Amniotic Membrane Transplantation for Persistent Epithelial Defects with Ulceration[J]. Am J Ophthalmol,
1997, 123(3):
303-312.
doi: 10.1016/S0002-9394(14)70125-4
[13]
Shinoda J, Yano H, Yoshimura S I. Fluorescence-Guided Resection of Glioblastoma Multiforme by Using High-Dose Fluorescein Sodium[J]. J Neurosurg,
2003, 99(3):
597-603.
doi: 10.3171/jns.2003.99.3.0597
[14]
Jamison J M, Krabill K, Hatwalkar A. Potentiation of the Antiviral Activity of Poly R(A-U) by Xanthene Dyes[J]. Cell Biol Int Rep,
1990, 14:
1075-1084.
doi: 10.1016/0309-1651(90)90015-Q
[15]
Chibale K, Visser M, van Schalkwyk D. Exploring the Potential of Xanthene Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents[J]. Tetrahedron,
2003, 59:
2289-2296.
doi: 10.1016/S0040-4020(03)00240-0
[16]
Sorokin P P, Lankard J R. Flashlamp Excitation of Organic Dye Lasers:A Short Communication[J]. IBM J Res Dev,
1967, 11(2):
148-148.
doi: 10.1147/rd.112.0148
[17]
Peterson O G, Webb J P, McColgin W C. Organic Dye Laser Threshold[J]. J Appl Phys,
1971, 42(5):
1917-1928.
doi: 10.1063/1.1660468
[18]
Han J Y, Burgess K. Fluorescent Indicators for Intracellular PH[J]. Chem Rev,
2009, 110(5):
2709-2728.
[19]
Urano Y, Kamiya M, Kanda K. Evolution of Fluorescein as a Platform for Finely Tunable Fluorescence Probes[J]. J Am Chem Soc,
2005, 127(13):
4888-4894.
doi: 10.1021/ja043919h
[20]
Lavis L D, Raines R T. Bright Ideas for Chemical Biology[J]. ACS Chem Biol,
2008, 3(3):
142-155.
doi: 10.1021/cb700248m
[21]
Lavis L D, Raines R T. Bright Building Blocks for Chemical Biology[J]. ACS Chem Biol,
2014, 9(4):
855-866.
doi: 10.1021/cb500078u
[22]
Woodroofe C C, Lim M H, Bu W M. Synthesis of Isomerically Pure Carboxylate-and Sulfonate-Substituted Xanthene Fluorophores[J]. Tetrahedron,
2005, 61(12):
3097-3105.
doi: 10.1016/j.tet.2005.01.024
[23]
Huang K Z, Liu M H, Liu Z G. Ratiometric and Colorimetric Detection of Hydrogen Sulfide with High Selectivity and Sensitivity Using a Novel FRET-Based Fluorescence Probe[J]. Dyes Pigm,
2015, 118:
88-94.
doi: 10.1016/j.dyepig.2015.03.007
[24]
Sakabe M, Asanuma D, Kamiya M. Rational Design of Highly Sensitive Fluorescence Probes for Protease and Glycosidase Based on Precisely Controlled Spirocyclization[J]. J Am Chem Soc,
2013, 135(1):
409-414.
doi: 10.1021/ja309688m
[25]
Kolmakov K, Belov V N, Bierwagen J. Red-Emitting Rhodamine Dyes for Fluorescence Microscopy and Nanoscopy[J]. Chem Eur J,
2010, 16(1):
158-166.
doi: 10.1002/chem.v16:1
[26]
Chang M C Y, Pralle A, Isacoff E Y. A Selevtive, Cell-Permeable Optical Probe for Hydrogen Peroxide in Living Cells[J]. J Am Chem Soc,
2004, 126(47):
15392-15393.
doi: 10.1021/ja0441716
[27]
Patel R G, Patel M P, Patel R G. 3, 6-Disubtituted Fluorans Containing 4(3H)-quinazolinon-3-yl, Diethyl Amino Groups and Their Application in Reversible Thermochromic Materials[J]. Dyes Pigm,
2005, 66(1):
7-13.
doi: 10.1016/j.dyepig.2004.08.004
[28]
Hammersh j P, Pramod Kumar E K, Harris P. Facile Large-Scale Synthesis of 5-and 6-Carboxyfluoresceins:Application for the Preparation of New Fluorescent Dyes[J]. Eur J Org Chem,
2015, 33:
7301-7309.
[29]
Wang C Y, Wong K M-C. Selevtive Hg2+ Sensing Behaviors of Rhodamine Derivatives with Extended Conjugation Based on Two Successive Ring-Opening Process[J]. Inorg Chem,
2013, 52(23):
13432-13441.
doi: 10.1021/ic401810x
[30]
Sen R N, Sinha N N. Condensations of Aldehydes with Resorcinol and Some Other Aromatic Hydroxy Compounds[J]. J Am Chem Soc,
1923, 45(12):
2984-2996.
doi: 10.1021/ja01665a026
[31]
Hilderbrand S A, Weissleder R. One-Pot Synthesis of New Symmetric and Asymmetric Xanthene Dyes[J]. Tetra Lett,
2007, 48(25):
4383-4385.
doi: 10.1016/j.tetlet.2007.04.088
[32]
Chevalier A, Renard P Y, Romieu A. Straightforward Access to Water-Soluble Unsymmetrical Sulfoxanthene Dyes:Application to the Preparation of Far-Red Fluorescent Dyes with Large Stokes' Shifts[J]. Chem Eur J,
2014, 20(27):
8330-8337.
doi: 10.1002/chem.201402306
[33]
Jiao G S, Thoresen L H, Burgess K. Fluorescent, Through-Bond Energy Transfer Cassettes for Labelling Mutiple Biological Molecules in One Experiment[J]. J Am Chem Soc,
2003, 125(48):
14668-14669.
doi: 10.1021/ja037193l
[34]
Sibrian-Vazquez M, Escobedo J O, Lowry M. Field Effects Induce Bathochromic Shifts in Xanthene Dyes[J]. J Am Chem Soc,
2012, 134(25):
10502-10508.
doi: 10.1021/ja302445w
[35]
Miller E W, Bian S X, Chang C J. A Fluorescent Sensor for Imaging Reversible Redox Cycles in Living Cells[J]. J Am Chem Soc,
2007, 129(12):
3458-3459.
doi: 10.1021/ja0668973
[36]
Shindo Y, Fujii T, Komatsu H. Newly Developed Mg2+-Selective Fluorescent Probe Enables Visualization of Mg2+ Dynamics in Mitochondria[J]. PLoS One,
2011, 6(8):
e23684.
doi: 10.1371/journal.pone.0023684
[37]
Cardoso I C S, Amorim A L, Queir s C. Microwave-Assisted Synthesis and Spectroscopic Properties of 4'-Substituted Rosamine Fluorophores and Naphthyl Analogues[J]. Eur J Org Chem,
2012, 2012(29):
5810-5817.
doi: 10.1002/ejoc.201200783
[38]
Lin W Y, Yuan L, Cao Z M. Through-Bond Energy Transfer Cassettes with Minimal Spectral Overlap Between the Donor Emission and Acceptor Absorption:Coumarin-Rhodamine Dyads with Large Pseudo-Stokes Shifts and Emission Shifts[J]. Angew Chem Int Ed,
2010, 49(2):
375-379.
doi: 10.1002/anie.200904515
[39]
Minta A, Kao J P, Tsien R Y. Fluorescent Indicators for Cytosolic Calcium Based on Rhodamine and Fluorescein Chromophores[J]. J Biol Chem,
1989, 264(14):
8171-8178.
[40]
Hirano T, Kikuchi K, Urano Y. Novel Zinc Fluorescent Probes Excitable with Visible Light for Biological Applications[J]. Angew Chem Int Ed,
2000, 112(6):
1094-1096.
doi: 10.1002/(ISSN)1521-3757
[41]
Komatsu H, Iwasawa N, Citterio D. Design and Synthesis of Highly Sensitive and Selective Fluorescein-Derived Magnesium Fluorescent Probes and Application to Intracellular 3D Mg2+ Imaging[J]. J Am Chem Soc,
2004, 126(50):
16353-16360.
doi: 10.1021/ja049624l
[42]
Ahn Y H, Lee J S, Chang Y T. Combinatorial Rosamine Library and Application to in vivo Glutathione Probe[J]. J Am Chem Soc,
2007, 129(15):
4510-4511.
doi: 10.1021/ja068230m
[43]
Yoon S, Miller E W, He Q W. A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue[J]. Angew Chem Int Ed,
2007, 46(35):
6658-6661.
doi: 10.1002/(ISSN)1521-3773
[44]
Wu L X, Burgess K. Synthesis and Spectroscopic Properties of Rosamines with Cyclic Amine Substituents[J]. J Org Chem,
2008, 73(22):
8711-8718.
doi: 10.1021/jo800902j
[45]
Beacham D, Dzubay J, Gee K, et al. Fluorogenic pH Sensitive Dyes and Their Method of Use:US.Patent Application 14/455, 550[P]. 2014-08-08.
[46]
Carpenter R D, Verkman A S. Synthesis of a Sensitive and Selective Potassium-Sensing Fluoroionophore[J]. Org Lett,
2010, 12(6):
1160-1163.
doi: 10.1021/ol902836c
[47]
Yang Y J, Escobedo J O, Wong A. A Convenient Preparation of Xanthene Dyes[J]. J Org Chem,
2005, 70(17):
6907-6912.
doi: 10.1021/jo051002a
[48]
Yang Y J, Lowry M, Schowalter C M. An Organic White Light-Emitting Fluorophore[J]. J Am Chem Soc,
2006, 128(43):
14081-14092.
doi: 10.1021/ja0632207
[49]
Yang Y J, Lowry M, Xu X Y. Seminaphthofluorones are a Family of Water-Soluble, Low Molecular Weight, NIR-Emitting Fluorophores[J]. Proc Natl Acad Sci,
2008, 105(26):
8829-8834.
doi: 10.1073/pnas.0710341105
[50]
Sezukuri K, Suzuki M, Hayashi H. A Laterally Π-Expanded Fluorone Dye as an Efficient Near Infrared Fluorophore[J]. Chem Commun,
2016, 52(27):
4872-4875.
doi: 10.1039/C6CC00237D
[51]
Gaillard S, Yakovlev A, Luccardini C. Synthesis and Characterization of a New Red-Emitting Ca2+ Indicator, Calcium Ruby[J]. Org Lett,
2007, 9(14):
2629-2632.
doi: 10.1021/ol070648h
[52]
Anzalone A V, Wang T Y, Chen Z X. A Common Diaryl Ether Intermediate for the Gram-Scale Synthesis of Oxazine and Xanthene Fluorophores[J]. Angew Chem Int Ed,
2013, 52(2):
650-654.
doi: 10.1002/anie.201205369
[53]
Lei Z H, Yang Y J. A Concise Colorimetric and Fluorimetric Probe for Sarin Related Threats Designed via the "Covalent-Assembly" Approach[J]. J Am Chem Soc,
2014, 136(18):
6594-6597.
doi: 10.1021/ja502945q
[54]
Lei Z H, Li X R, Li Y. Synthesis of Sterically Protected Xanthene Dyes with Bulky Groups at C-3' and C-7'[J]. J Org Chem,
2015, 80(22):
11538-11543.
doi: 10.1021/acs.joc.5b01746